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Abstract

The problem of predicting the secondary structure of proteins is a difficult one. Traditional statis-
tical methods don’t tend to produce good results. In their 1987 paper Qian and Sejnowski showed that
artificial neural networks can be used to gain more accurate predictions than previous methods have
been able to give. This study shows the usefulness of perceptrons for solving this, and other problems,
confirming the findings of the aforementioned paper. This report also explores state of the art online
structure prediction services, that are able to outperform the neural networks used in the study by
Qian et al.

1 Introduction

In Molecular Biology, a protein is a biochemical
compound that contains one or more polypeptide
chain. The primary structure of a protein is de-
fined as the sequence of amino acids that make up
the polypeptide chain. There are twenty amino
acids that can form proteins, these are each repre-
sented by a different letter of the alphabet. The
secondary structure, the one we are concerned
with, refers to the general local structure of the
protein at some amino acid, and is determined not
only by the given amino acid but also by those that
surround it. Secondary structures can be placed
into one of three classes: α-helix, β-sheet and coil
(anything that is not α or β ). The task of predict-
ing the secondary structure given only the primary
structure is relatively difficult, traditional statisti-
cal methods rarely get above 50% success rates.

Artificial neural networks are a computational
model that is based on the structure of the brain.
They consist of one or more artificial neuron; each
neuron has a set of inputs, a set of weights and a
single output. A neural network can be ”trained”
on some set of inputs and expected outputs such
that the output on unseen data will match the pat-
terns contained in the training data. These net-
works can be used to model complex functions and
discover high dimensional patterns. It is possible
to apply a threshold to the output of the neurons
and produce a binary classifier.

It has been shown (by Qian et al.) that binary
classifying artificial neural networks can be used to
predict the secondary structure of proteins with a

Figure 1: A conceptual model of a Perceptron

noticeable improvement in success rates over tra-
ditional statistical methods. This study aims to
validate these claims.

2 Method

2.1 Artificial Neural Networks

As previously mentioned an artificial neural net-
work is a collection of artificial neurons that can
be used to model some function; they are capable
of modelling functions that contain patterns only
at very high numbers of dimensions.

2.1.1 Perceptron

A perceptron is a the simplest kind of artificial
neural network. It contains only one layer, and can
be modelled as though it were only one neuron.
Perceptrons are generally implemented as binary
classifiers producing a result of one of two values
(sigmoid perceptrons that produce a results scaled
between zero and one also exist), this means that
they will return one of two values, based on some
internal threshold.

In this study perceptrons were implemented to
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solve the decision problems: ”is an α-helix” and
”is a β-sheet”. Outputs from these perceptrons
were then combined to determine the secondary
structure of the protein.

The outputs of the perceptrons were generated
using the function:

f(x) =

{
1 if x · w + b > 0

0 otherwise
(1)

Where x is a vector of inputs, w is a vector of
weights and b is a bias. x is of equal length to w.

The perceptron implementation was designed to
be as flexible and reusable as possible. The number
of inputs, the bias learning rate and the number of
iterations could all be altered depending on the
application. This allows to the perceptron to be
trained and tested on a wide variety of problems.

2.1.2 Multilayer Neural Networks

Multilayer Neural networks consist of many lay-
ers of nodes. The input layer receives input and
the output layer returns values to the user. There
are also hidden layers where the nodes receive in-
puts from other layers, and return values to further
nodes in other layers. Multilayer neural networks
are sensitive to patterns of higher order than per-
ceptrons.

The encog Java neural network library was used
to implement a multilayer neural network. To al-
low the tests written for the perceptron to run on
the encog implementation, an adaptor class was
written to provide a consistent interface to the two
implementations.

2.1.3 Training

Neural networks require training before they can
be used to predict anything. The aim of train-
ing is to obtain a set of weights that produce the
expected corresponding results when inputs are
passed into Equation 1. For each element of the
training set, the elements must be adjusted to en-
sure the correct answer will be returned.

The training algorithm for a multilayer neural
network is very complex and is beyond the scope
of this project. The perceptron training algorithm
is far simpler:

1. Begin by selecting some random values for
each of the weights wi. The bias b is set to
some predefined constant.

2. For each input vector xi of the training set D:

(a) Calculate the actual output yj of the per-
ceptron using equation 1.

(b) If yj is:

i. equal to the expected result dj , do
nothing.

ii. larger than dj , decrease w.

iii. smaller than dj , increase w.

Step two leads to the formula:

wi(t+ 1) = wi(t) + α(dj − yj(t))xij (2)

Where α is the learning rate constant.
We call an element of the dataset, where the

actual output is not equal to the expected output,
an error case. Step 2 is repeated until there are less
than a certain threshold of error cases in the data
set, or some predetermined limit for the number of
iterations has been reached.

2.2 Dataset

The data set used in this study is published in the
UCI Machine Learning Repository [1]. It is com-
prised of a list of the primary structures of many
proteins and their corresponding secondary struc-
tures.

Initially the data set is very imbalanced. The
distribution of α-helices, for example, is far lower
than that of not α-helices. A more distributed sub-
set of the training set needs to be created to train
the neural network with - if this was not done,
the neural network would essentially learn that α-
helices never occur.

The data set fed into the neural networks also
needs to take into account the fact that each sec-
ondary structure is affected not only by it’s cor-
responding primary structure but also those sur-
rounding it.

The perceptron implementation took care of
these problems by first reading in the sequence
of amino acids stored in the text file. Then for
each entry it creates an AminoAcid object that
stores the primary and secondary structure. Each
AminoAcid object is stored inside a list containing
class called a Protein. The Proteins are then stored
inside a List. This object structure was very flexi-
ble and allowed the representation to be output in
many different formats very easily.

With this abstract representation of the data,
an intermediate structure is created, a three di-
mensional array of doubles. For each AminoAcid a
”window” is stored - the window contains a central
AminoAcid and then two (or any other number) ei-
ther side. Where the window runs off the ends of
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the protein, blanks are stored. Each AminoAcid is
binary coded into a twenty one index array where
all the values are zero except for the one repre-
senting the primary structure who’s value is one.
The expected output is stored as an array of length
three in the second position of the second dimen-
sion, and is coded in a similar fashion. Each of the
windows are stored in a separate index of the third
dimension of the array.

The array might look something like:

{{{0,0,..,1,0}, {0, 0, 1}},

{{1,0,..,0,0}, {0, 1, 0}},

..,

{{0,0,..,0,1}, {1, 0, 0}}}

Once this array has been obtained, a set num-
ber of samples are picked at random, ensuring that
the number of samples picked from each class (e.g.
α-helix or not α-helix) are roughly equal; This is
done by generating a random number and only us-
ing that selection if the random number is on the
correct side of the required probability.

2.3 Measuring Performance

The two main measures of the success of a sec-
ondary structure prediction model are the corre-
lation coefficients Cx, and the percentage of the
predictions that are correct Q3.[2]

The correlation coefficients can be calculated us-
ing the following formula:

Cx =
(pxnx) + (uxox√

(nx + ux)(nx + ox)(px + ux)(px + ox
(3)

Where px is the number of positively predicted
that were correct, nx is the number of correct neg-
ative predictions, ux is the under predictions, and
ox is over predictions.

The percentage of correct predictions (or success
rate) for the secondary structure problem can be
calculated as below. This method can of course be
generalised to other problems:

Q3 =
Pα + Pβ + Pcoil

N
(4)

where Px is the number of correctly predicted
windows and N is the total number of windows.

For the perceptron, where there is only one out-
put, the following adapted formula can be used,
where P!α is the percentage of correctly guessed
non α-helicies:

Q3 =
Pα + P!α

N
(5)

Table 1: Weights for OR Gate

Iteration w0 w1 bias

0 0 0 1
1 1 1 -1

A similar formula can also be used for β-sheets.
However, the correlation coefficient tends to be a
better indicator of how good the model is for sec-
ondary structures.

A more qualitative view of the performance and
other properties of the neural networks can be ob-
tained by plotting graphs of various aspects of the
data. In this study Gnuplot was used to produce
the graphs from data written to stdout by the Java
programs.

3 Results

3.1 Toy Problems

The problem of predicting the Secondary struc-
ture of a protein is a very high dimensional prob-
lem, even with only one amino acid, there are still
twenty inputs. Due to the limitations of space and
time, it is very difficult to plot a graph of more than
three dimensions. Synthetic data sets that could
be easily verified to test that the perceptron imple-
mentation was correct were produced to overcome
this issue. For a perceptron to be able to learn a
problem, that problem must be linearly separable,
this means that there exists some place or hyper-
plane that can intersect the two classes. XOR is an
example of a problem that is not linearly separable.

3.1.1 OR Gate

The first synthetic data set that was generated was
an OR gate, the perceptron was trained with the
same four input vectors until it generated the cor-
rect answer for each of them first time round.

Because the OR Gate is such as simple problem,
starting with all the weights on zero, the percep-
tron was able to produce the correct weights af-
ter just one iteration. This can be seen from the
weights of each iteration shown in Table 1.

Once trained the perceptron was able to pro-
duce a 100% success rate, predicting correctly all
four possible inputs. It should be noted that the
training set for this perceptron was the same as its
test set.
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Figure 2: Graph of random points split into two
classes by the line 0.73x + 0.34
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Figure 3: Graph of Weights for Linear Function
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3.1.2 Linear function

A second, slightly less simple, dataset was gener-
ated at random, using a seed to ensure repeatabil-
ity, that complied with the formula for a straight
line:

x1 = mx0 + c (6)

As can be seen in Figure 2, random points were
classified depending on which side of the solid line
they fall. On the graph, the crosses represent one
class and the pluses the other. The perceptron is
represented by the dotted line, it is not identical
to the expected line but nevertheless it is able to
correctly classify all the points on the graph.

This perceptron took many more iterations to
produce acceptable weights than the OR gate per-
ceptron. Figure 3 shows weights of the perceptron
when m = 2 and c = 0.7. The clustering on the
graph shows that as the weights approached their
actual value, approximately 58 and -28, the differ-
ence in weights after each iteration decreased.

Using 100 different random sets of values for m
and c, each over a test set of 10,000 pairs, only
15 perceptrons made any incorrect predictions, of
these the average success rate was still 99.835% .
It is worth noting that there was an iteration limit
of 1001 on the training procedure, and all of the
incorrect results had reached this limit. Given un-

Table 2: Iterations and Success Rates of a Percep-
tron Modelling the Function x1 = mx0 + c

m c Iterations Success Rate

0.73 0.34 229 100.0%
0.17 0.71 58 100.0%
0.93 0.56 236 100.0%
0.21 0.37 229 100.0%
0.33 0.79 64 100.0%
0.67 1 1 100.0%
0.45 0.42 198 100.0%
0.04 0.98 1001 99.6%
0.1 0.76 822 100.0%
0.24 0.86 24 100.0%

Figure 4: Graph of the proportion of errors that
occurred on each iteration for a perceptron
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bounded time and space, it is likely that all of the
perceptrons would have accepted their entire test
set. The overall average success rate was 99.975%.

Table 2 shows a small sample of the iterations
and success rates for random m and c values, the
actual values of m and c have been rounded.

3.2 Predicting Secondary Structures

3.2.1 Perceptron

The same implementation of a perceptron was used
to answer the decision problem ”is an α-helix”. A
window of five amino acids was used as the input
to the perceptron - this gave a total of 105 inputs
to the perceptron.

With a learning rate of 0.0001 it took 140 it-
erations to reach a minimum proportion of errors
at 77% success. The errors given on the graph
is the number of error cases divided by the total
number of inputs. This can be seen on the graph
in Figure 4 . After this point the values remained
stable, fluctuating around a point slightly higher
than this minima.

At this number of iterations with a random bal-
anced training set, and tested on the complete test
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Figure 5: Graph of the success rare against window
size for a multilayer neural network
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set, a value of 66.59% was obtained for Q3 and a
value of 0.281 was obtained for Cα. The pecep-
tron correctly guessed 1787 negatives(n) and 557
positives(p), incorrectly guessing 292 positives(u)
and 884 negatives(o). These values were typical
for several trial runs using different seeds to create
the random numbers.

The perceptron was also altered to predict the
presence of a β-sheet. The results were fairly sim-
ilar to those obtained for α-helices. Values of
Q3 ≈ 65% and Cβ ≈ 0.253 were typical.

These two perceptrons were then assembled into
one by creating a composite class that offered the
same interface as the normal perceptron, but in-
stead returned an array of three values, represent-
ing whether the structure was an α-helix, a β-sheet
or a coil. If both of the constituent perceptrons
return true, one of the two inputs is chosen at ran-
dom. This method was only able to obtain Q3 ≈
55%, which is not as high as in (Qian)[2]. Correle-
lation coeffcients were Cα ≈ 0.264 , Cβ ≈ 0.221
and Ccoil ≈ 0.286.

3.2.2 Multilayer neural network

To implement a Multilayer neural network the
encog java library was used. [3] Encog offers a
huge choice of classes for deploying a neural net-
work; the BasicNetwork class was chosen as this is
the most similar to the network used by (Qian).
SigmoidActivation was used as the model for the
network and ResilliantPropogation was used for
training. An adaptor class was written to allow
the tests written for the perceptron to be reused.

Initially a balanced training set was used, how-
ever this didn’t produce brilliant results: a typical
values was Q3 ≈ 54 and lower.

The training set was extended to the entire
training data as in (Qian)[2], this produced results
that were more similar to those in (Qian). The
window size was also increased from 5 to 13; as

Figure 6: Graph of the proportion of errors that
occurred on each iteration for a multilayer neural
network
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Figure 7: Graph of the success rare against error
threshold for a multilayer neural network
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(Qian) showed, Figure 5 confirms that the optimal
number of amino acids per window is 13. Typical
results of Q3 ≈ 62.8%, Cα ≈ 0.309, Cβ ≈ 0.295
and Ccoil ≈ 0.376 were obtained.

As can be seen in Figure 6, the training seems
to start off fairly sporadically, but quickly settles
down tending towards zero at a decreasing rate.
Strangely it seems that number of errors that occur
during training are not directly proportional to the
success rate, peaking at around 0.15. This can be
seen in Figure 7

4 Discussion

4.1 Comparison with Qian et Sejnowski

Using a perceptron with a balanced data set, pre-
dicting just α-helix and not α-helix, values for suc-
cess rate (Q3) higher than in (Qian) were obtained.
This is probably the case because the perceptron
is not distinguishing between two of the classes (β-
sheet and coil). When two perceptrons were assem-
bled together to classify in one of the three classes,
far lower results were obtained. An explanation
for this is that: a) The window size was smaller
b) there is no hidden layer, so any second order
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Table 3: Results of Online Secondary Structure
Predictors

Service Q3 Cα Cβ Ccoil
Qian [2] 64.3% 0.41 0.31 0.41
Jpred [5] 76% 0.80 0.47 0.58
PSIPRED [6] 78% 0.80 0.52 0.62
Porter [7] 70% 0.74 0.46 0.52
JUfo [8] 69% 0.77 0.43 0.50
Scratch [9] 71% 0.66 0.54 0.49

patterns in the data set cannot be identified.

The multilayer network (encog) produced results
that were far more similar to those of (Qian), this
is mainly because the structure of the network was
very similar, and the parameters used when con-
structing and configuring the objects were based
on those used by (Qian). The fact that the re-
sults were so similar and the trends which were ob-
served by varying the independent variables shows
that (Qians) results were reproducible and there-
fore valid.

4.2 Comparison with Online Services

The string representing the amino acids of the first
protein in the test set was fed into several online
services. The outputs were then parsed and the
various statistics generated for them. These results
can be seen in Table 3.

The results obtained from these web based ser-
vices tended to be much higher than anything that
was produced by the predictor in this study, or the
results reported by (Qian). There could be many
reasons for this, including: The testing data used
was very small, and could have been an anomalous
case, the modern services employ better algorithms
than existed when (Qian) was published, the mod-
ern services use a larger data set, or the protein
may occur in (or be homologous with one in) the
training set employed by these services.

The web based services all took a very long time
to return answers, averaging around ten minutes.
This could also be for the same reasons as above, or
for other reasons such as competition on the server
causing delays before processing.

4.3 Conclusion

This study has shown that neural networks can be
used to solve very simple problems with a very high
level of accuracy, and more complex problems with
a lower level of accuracy.

Neural networks are clearly a better way of pre-
dicting secondary structure than traditional meth-
ods, but still are not very reliable. Modern systems
that use other methods to obtain a higher success
rate are clearly more desirable for use in scientific
and medical settings, where a success rate of 63%
wouldn’t be acceptable - although it is certain that
there are many applications where success rates of
78% are not high enough either.
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Appendices

The following listings are the code used to produce the results seen in this report. The encog Java
library is required to run this code. The code provided runs silently, to produce an output, ”Sys-
tem.out.println()” statements must be added in the correct places. The Main methods in the various
classes are included as examples and should be altered to perform the desired functionality.

A Amino Acid Class

import java . u t i l . HashMap ;

/∗∗
∗ Represents an amino ac id .
∗/

public class AminoAcid{
Character l e t t e r ;
boolean i sAlpha ;
boolean i sBeta ;
boolean i s C o i l ;

stat ic boolean l e t t e r M a p I n i t i a l i z e d = fa l se ;
stat ic boolean i n v e r s e L e t t e r M a p I n i t i a l i z e d = fa l se ;
stat ic HashMap<Character , Integer> l etterMap ;
stat ic HashMap<Integer , Character> inverseLetterMap ;

/∗∗
∗ The d e f a u l t cons t ruc t o r f o r an amino ac id
∗ @param l e t t e r The l e t t e r t h a t t h i s amino ac id i s r epre sen t ed by
∗ @param secondaryStruc ture The secondary s t r u c t u r e a s s o c i a t e d
∗ with t h i s amino ac id
∗/

public AminoAcid ( Character l e t t e r , char secondaryStructure ){
this . l e t t e r = l e t t e r ;

i n i t i a l i z e L e t t e r M a p ( ) ;
i n i t i a l i z e I n v e r s e L e t t e r M a p ( ) ;

i sAlpha = fa l se ;
i sBeta = fa l se ;
i s C o i l = fa l se ;

switch ( secondaryStructure ){
case ’ h ’ : i sAlpha = true ; break ;
case ’ e ’ : i sBeta = true ; break ;
case ’ ’ : i s C o i l = true ; break ;

}
}

/∗∗
∗ Se t s up the l e t t e r map
∗/

stat ic private void i n i t i a l i z e L e t t e r M a p (){
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i f ( l e t t e r M a p I n i t i a l i z e d ) return ;

l etterMap = new HashMap<Character , Integer >() ;

letterMap . put ( ’G’ , 0 ) ;
letterMap . put ( ’P ’ , 1 ) ;
letterMap . put ( ’A ’ , 2 ) ;
letterMap . put ( ’V ’ , 3 ) ;
letterMap . put ( ’L ’ , 4 ) ;
letterMap . put ( ’ I ’ , 5 ) ;
letterMap . put ( ’M’ , 6 ) ;
letterMap . put ( ’C ’ , 7 ) ;
letterMap . put ( ’F ’ , 8 ) ;
letterMap . put ( ’Y ’ , 9 ) ;
letterMap . put ( ’W’ , 1 0 ) ;
letterMap . put ( ’H ’ , 1 1 ) ;
letterMap . put ( ’K’ , 1 2 ) ;
letterMap . put ( ’R ’ , 1 3 ) ;
letterMap . put ( ’Q’ , 1 4 ) ;
letterMap . put ( ’N ’ , 1 5 ) ;
letterMap . put ( ’E ’ , 1 6 ) ;
letterMap . put ( ’D ’ , 1 7 ) ;
letterMap . put ( ’S ’ , 1 8 ) ;
letterMap . put ( ’T ’ , 1 9 ) ;

}

/∗∗
∗ Se t s up the in v e r s e l e t t e r map
∗/

stat ic private void i n i t i a l i z e I n v e r s e L e t t e r M a p ( ){
i f ( i n v e r s e L e t t e r M a p I n i t i a l i z e d ) return ;

inverseLetterMap = new HashMap<Integer , Character >() ;

inverseLetterMap . put (0 , ’G’ ) ;
inverseLetterMap . put (1 , ’P ’ ) ;
inverseLetterMap . put (2 , ’A ’ ) ;
inverseLetterMap . put (3 , ’V ’ ) ;
inverseLetterMap . put (4 , ’L ’ ) ;
inverseLetterMap . put (5 , ’ I ’ ) ;
inverseLetterMap . put (6 , ’M’ ) ;
inverseLetterMap . put (7 , ’C ’ ) ;
inverseLetterMap . put (8 , ’F ’ ) ;
inverseLetterMap . put (9 , ’Y ’ ) ;
inverseLetterMap . put (10 , ’W’ ) ;
inverseLetterMap . put (11 , ’H ’ ) ;
inverseLetterMap . put (12 , ’K ’ ) ;
inverseLetterMap . put (13 , ’R ’ ) ;
inverseLetterMap . put (14 , ’Q ’ ) ;
inverseLetterMap . put (15 , ’N ’ ) ;
inverseLetterMap . put (16 , ’E ’ ) ;
inverseLetterMap . put (17 , ’D ’ ) ;
inverseLetterMap . put (18 , ’S ’ ) ;
inverseLetterMap . put (19 , ’T ’ ) ;
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}

/∗∗
∗ @return The l e t t e r a s s o c i a t e d wi th t h i s amino ac id
∗/

public Character g e tL e t t e r ( ){
return this . l e t t e r ;

}

/∗∗
∗ Converts an array index to an o f f s e t
∗ @param num The array o f f s e t
∗ @return The charac t e r r e p r e s en t a t i on
∗/

stat ic public char getLetterFromNumber ( int num){
return inverseLetterMap . get (num ) ;

}

/∗∗
∗ @return The array o f f s e t needed to r ep r e s en t t h i s amino ac id
∗/

public int g e t O f f s e t ( ){
return l etterMap . get ( this . g e tL e t t e r ( ) ) ;

}

/∗∗
∗ @return t rue i f the secondary s t r u c t u r e i s a lpha h e l i x
∗/

public boolean getIsAlpha ( ){
return this . i sAlpha ;

}

/∗∗
∗ @return t rue i f the secondary s t r u c t u r e i s be ta shee t
∗/

public boolean get I sBeta ( ){
return this . i sBeta ;

}

/∗∗
∗ @return t rue i f the secondary s t r u c t u r e i s c o i l
∗ @return
∗/

public boolean g e t I s C o i l ( ){
return this . i s C o i l ;

}

}

B Multi Perceptron Class

import java . u t i l . Random ;

/∗∗
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∗ This c l a s s uses two percep t rons to p r e d i c t the secondary
∗ s t r u c t u r e o f a p ro t e in .
∗/

public class Mult iPerceptron implements Pe rc e p t r on I n t e r f a c e {

Perceptron hPerceptron , ePerceptron ;
stat ic f ina l double POSITIVE = 1 , NEGATIVE = 0 ;

/∗∗
∗ Defua l t cons t ruc t o r f o r Mul t iPerceptron
∗ @param learn ingRate A user de f ined ra t e o f l e a rn ing
∗ @param b i a s The b i a s to be used in the percep t rons
∗ @param maxI tera t ions A l im i t to the i t e r a t i o n s to perform
∗ @param weightRange The range in which the random we igh t s w i l l f a l l
∗ @param noOfInputs The number o f inpu t s to the percep t rons
∗/

public Mult iPerceptron (double l earn ingRate , double bias ,
int maxIterat ions , double weightRange , int noOfInputs ){

hPerceptron = new Perceptron ( learn ingRate , b ias , maxIterat ions ,
weightRange , noOfInputs ) ;

ePerceptron = new Perceptron ( learn ingRate , b ias , maxIterat ions ,
weightRange , noOfInputs ) ;

ePerceptron . setExpectedResult Index ( 1 ) ;
}

/∗∗
∗ Trains the two conta ined percep t rons based on the data s e t
∗ @param dataSet The complete ( unbalanced ) data s e t to be t ra ined on
∗ @param expec t edResu l t s The expec ted r e s u l t s
∗/

public void learnFromData (double [ ] [ ] dataSet , double [ ] [ ] expectedResu l t s ) {
//Create a ba lanced data s e t f o r the a lpha p r e d i c t o r
double [ ] [ ] [ ] bds =

(new SecondaryStructurePred i c tor ( ’h ’ ) ) . createBalancedDataSet (
dataSet , expectedResul t s , 7200 ) ;

hPerceptron . learnFromData ( bds [ 0 ] , bds [ 1 ] ) ;
//Create a ba lanced data s e t f o r the be ta p r e d i c t o r
bds = (new SecondaryStructurePred i c tor ( ’ e ’ ) ) . createBalancedDataSet (

dataSet , expectedResul t s , 7200 ) ;
ePerceptron . learnFromData ( bds [ 0 ] , bds [ 1 ] ) ;

}

/∗∗
∗ Pred i c t s a secondary s t r u c t u r e us ing the two percep t rons
∗ @param input The input to p r e d i c t a r e s u l t f o r
∗/

public double [ ] p r e d i c t (double [ ] input ) {
//IF they are both nega t i ve , s e t c o i l to t rue
double c o i l ;
i f ( ( hPerceptron . p r e d i c t ( input ) [ 0 ] == NEGATIVE) &&

( ePerceptron . p r e d i c t ( input ) [ 1 ] == NEGATIVE)){
c o i l = POSITIVE ;

}
else c o i l = NEGATIVE;
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double [ ] r e s u l t = {hPerceptron . p r e d i c t ( input ) [ 0 ] ,
ePerceptron . p r e d i c t ( input ) [ 1 ] , c o i l } ;

// I f they are both nega t i ve , p i c k j u s t one
Random r = new Random ( 3 2 ) ;
i f ( ( hPerceptron . p r e d i c t ( input ) [ 0 ] == POSITIVE) &&

( ePerceptron . p r e d i c t ( input ) [ 1 ] == POSITIVE) ) {
r e s u l t [ r . next Int ( 2 ) ] = NEGATIVE;

}
return r e s u l t ;

}

}

C Neural Network Class

import java . u t i l . Arrays ;
import org . encog . ml . data . MLData ;
import org . encog . ml . data . MLDataSet ;
import org . encog . ml . data . ba s i c . BasicMLData ;
import org . encog . ml . data . ba s i c . BasicMLDataSet ;
import org . encog . ml . t r a i n . MLTrain ;
import org . encog . neura l . networks . BasicNetwork ;
import org . encog . neura l . networks . l a y e r s . BasicLayer ;
import org . encog . neura l . networks . t r a i n i n g . propagat ion . r e s i l i e n t . Re s i l i en tPropaga t i on ;

/∗∗
∗ Adaptor from Perceptron i n t e r f a c e to Encog
∗/

public class NeuralNet implements Pe rc e p t r on I n t e r f a c e {
BasicNetwork network ;
int outputs ;
double e r r o r s ;

public stat ic int SEED = 42 ;
stat ic f ina l double POSITIVE = 1 , NEGATIVE = 0 ;

/∗∗
∗ Defau l t cons t ruc t o r f o r Neural Net c l a s s
∗ @param inpu t s Number o f inpu t s
∗ @param outpu t s Number o f ou tpu t s
∗ @param hiddenLayers Number o f un i t s in hidden l a y e r
∗ @param erro r s The acceptance t h r e s h o l d f o r i t e r a t i o n s
∗/

public NeuralNet ( int inputs , int outputs , int hiddenLayers , double e r r o r s ){
network = new BasicNetwork ( ) ;
network . addLayer (new BasicLayer ( inputs ) ) ;
network . addLayer (new BasicLayer ( hiddenLayers ) ) ;
network . addLayer (new BasicLayer ( outputs ) ) ;
network . g e tS t ruc tu r e ( ) . f i n a l i z e S t r u c t u r e ( ) ;
//Unfor tuna te l y in t roduce s a random element
network . r e s e t ( ) ;

this . outputs = outputs ;
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this . e r r o r s = e r r o r s ;
}

/∗∗
∗ Teaches the neura l network based on data s e t
∗ @param dataSet The data s e t to l ea rn from
∗ @param expec t edResu l t s The corresponding expec ted r e s u l t s
∗/

public void learnFromData (double [ ] [ ] dataSet , double [ ] [ ] expectedResu l t s ) {
MLDataSet t r a i n i n g S e t = new BasicMLDataSet ( dataSet , expectedResu l t s ) ;
f ina l MLTrain t r a i n = new Res i l i en tPropaga t i on ( network , t r a i n i n g S e t ) ;
do{

t r a i n . i t e r a t i o n ( ) ;
}while ( ( t r a i n . g e t I t e r a t i o n ( ) < 1000) && ( t r a i n . getError ( ) > e r r o r s ) ) ;

}

/∗∗
∗ Guesses The secondary s t r u c t u r e f o r the g iven input
∗ @param input The data to guess f o r
∗ @return Some gues se s
∗/

public double [ ] p r e d i c t (double [ ] input ) {
MLData t e s t = new BasicMLData ( input ) ;

//Takes care o f any percep tron s t y l e problems
i f ( outputs == 1){

double [ ] r e s u l t = {1} ;
i f ( network . compute ( t e s t ) . getData ( ) [ 0 ] > 0 . 5 ) r e s u l t [ 0 ] = POSITIVE ;
else r e s u l t [ 0 ] = NEGATIVE;
return r e s u l t ;

}

//Takes care o f the r e s t
double cur rentHighes t = network . compute ( t e s t ) . getData ( ) [ 0 ] ;
int currentHighes t Index = 0 ;
for ( int i = 0 ; i < outputs ; i ++){

i f ( network . compute ( t e s t ) . getData ( ) [ i ] > cur rentHighes t ){
cur rentHighes t = network . compute ( t e s t ) . getData ( ) [ i ] ;
cur rentHighes t Index = i ;

}
}
double [ ] r e s u l t = new double [ outputs ] ;
Arrays . f i l l ( r e s u l t , NEGATIVE) ;
r e s u l t [ cur rentHighes t Index ] = POSITIVE ;
return r e s u l t ;

}
}

D OR Gate Perceptron Test Class

import java . u t i l . ArrayList ;
import java . u t i l . L i s t ;
import java . u t i l . Random ;
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/∗∗
∗ This c l a s s encap su l a t e s a t e s t harness f o r an
∗ OR gate percep tron
∗/

public class ORGatePerceptronTest implements Test{

stat ic f ina l int SEED = 42 ;
stat ic f ina l boolean FAIR DISTRIBUTION = true ;
stat ic f ina l double POSITIVE = 1 , NEGATIVE = 0 ;

/∗∗
∗ Example o f a Main method f o r t h i s c l a s s
∗/

public stat ic void main ( St r ing [ ] a rgs ){
Random r = new Random(SEED) ;
Test t = new ORGatePerceptronTest ( ) ;
performTest ( t , 3 0 ) ;

}

/∗∗
∗ Perform some t e s t
∗ @param t e s t The t e s t to perform
∗ @param noOfTests No o f t imes to repea t the t e s t
∗/

stat ic void performTest ( Test t e s t , int noOfTests ){

Perceptron p = new Perceptron ( 0 . 5 , 1 , 1000 , 0 , 2 ) ;

int t e s t s = noOfTests ;

double [ ] [ ] [ ] dataSetAndExpectedResults = t e s t . generateDataset ( t e s t s ) ;
double [ ] [ ] dataSet = dataSetAndExpectedResults [ 0 ] ;
double [ ] [ ] expectedResu l t s = dataSetAndExpectedResults [ 1 ] ;

p . learnFromData ( dataSet , expectedResu l t s ) ;

int f a i lCount = 0 ;
double [ ] input = new double [ 2 ] ;

dataSetAndExpectedResults = t e s t . generateDataset ( t e s t s ) ;
dataSet = dataSetAndExpectedResults [ 0 ] ;
expectedResu l t s = dataSetAndExpectedResults [ 1 ] ;

L i s t<double [ ]> setA = new ArrayList<double [ ] > ( ) ,
setB= new ArrayList<double [ ] > ( ) ;

for ( int i = 0 ; i < dataSet . l ength ; i ++){
input [ 0 ] = dataSet [ i ] [ 0 ] ;
input [ 1 ] = dataSet [ i ] [ 1 ] ;
i f (p . p r e d i c t ( input ) [ 0 ] != expectedResu l t s [ i ] [ 0 ] ) f a i lCount++;
i f ( expectedResu l t s [ i ] [ 0 ] == 1) setA . add ( dataSet [ i ] ) ;
else setB . add ( dataSet [ i ] ) ;

}
}
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/∗∗
∗ Generate an OR gate data s e t
∗ @param s i z e Not needed
∗ @return a data s e t and expec ted r e s u l t s f o r OR gate
∗/

public double [ ] [ ] [ ] generateDataset ( int s i z e ){
double [ ] [ ] dataSet = {{0 ,0} , {0 ,1} , {1 ,0} , {1 ,1}} ;
double [ ] [ ] expectedResu l t s =

{{NEGATIVE} , {POSITIVE} , {POSITIVE} , {POSITIVE}} ;

double [ ] [ ] [ ] r e s u l t = {dataSet , expectedResu l t s } ;
return r e s u l t ;

}
}

E Perceptron Class

import java . u t i l . Random ;
import java . u t i l . Arrays ;

/∗∗
∗ Perceptron i s c l a s s t ha t implements a percep tron to s o l v e d i s c i s i o n problems
∗ based on l ea rn ing from a data s e t o f known va l ue s .
∗/

public class Perceptron implements Pe rc e p t r on I n t e r f a c e {
stat ic f ina l int SEED = 42 ;
stat ic f ina l double POSITIVE = 1 , NEGATIVE = 0 ;

private double l ea rn ingRate ;
private double [ ] weight ;
private double b ia s ;
private int maxIterat ions ;
private int expectedResult Index = 0 ;

/∗∗
∗ The d e f a u l t cons t ruc t o r f o r Perceptron
∗ @param learn ignRate A user s p e c i f i e d l e a rn ing ra t e cons tant
∗ @param b i a s A user s p e c i f i e d b i a s
∗ @param maxI tera t ions The maximum number o f i t e r a t i o n s t ha t w i l l be
∗ performed f o r a member o f the input s e t
∗ @param noOfInputs The number o f inpu t s t h i s percep tron w i l l t ake
∗/

public Perceptron (double l earn ingRate , double bias ,
int maxIterat ions , double weightRange , int noOfInputs ){

this . l ea rn ingRate = learn ingRate ;
this . b i a s = b ia s ;
this . maxIte rat ions = maxIterat ions ;
this . weight = new double [ noOfInputs ] ;

Arrays . f i l l ( this . weight , 0 ) ;

i f ( weightRange != 0){
Random r = new Random(SEED) ;
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for ( int i = 0 ; i < weight . l ength ; i++) {
weight [ i ] = ( r . nextDouble ( ) ∗ weightRange ) − ( weightRange / 2 ) ;

}
}

}

/∗∗
∗ Takes in a data s e t and l e a rn s from the data
∗ @param dataSet A s e t o f known mappings in the de s i r ed func t i on .
∗ Must be o f the form [ x1 , x2 , . . . , xn , d e s i r ed output ]
∗/

public void learnFromData (double [ ] [ ] dataSet , double [ ] [ ] expectedResu l t s ){
int errorCount = 0 ;
int i t e r a t i o n s = 0 ;

do{

i t e r a t i o n s ++;
errorCount = 0 ;
int i =0;
for (double [ ] data : dataSet ){

i f ( teach ( data , ( int ) expectedResu l t s [ i ] [ expectedResul t Index ] ) !=0){
errorCount++ ;

}
i ++;

}
} while ( errorCount > 1 && i t e r a t i o n s <= maxIterat ions ) ;

}

/∗∗
∗ Teaches the machine the g iven input
∗ @param input The know input o f the func t i on
∗ @param expec t edResu l t The va lue the func t i on shou ld re turn when g iven input
∗ @return error
∗/

private int teach (double [ ] input , int expectedResu l t ){
double actua lResu l t , r e s u l t D i f f e r e n c e ;
int e r r o r = 1 ;

ac tua lResu l t = p r e d i c t ( input ) [ expectedResul t Index ] ;
r e s u l t D i f f e r e n c e = expectedResu l t − ac tua lResu l t ;

i f ( r e s u l t D i f f e r e n c e == 0) return 0 ;

b i a s = b ia s + learn ingRate ∗ r e s u l t D i f f e r e n c e ∗ 1 ;

for ( int i = 0 ; i < input . l ength ; i ++){
weight [ i ] = weight [ i ] + learn ingRate ∗ r e s u l t D i f f e r e n c e ∗ input [ i ] ;

}
return e r r o r ;

}

/∗∗
∗ Pred i c t s the va lue o f f f o r the g iven input based on what
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∗ i t has been taugh t
∗ @param input Input data f o r f
∗ @return +1 or −1 dependent on what i t has l earned
∗/

public double [ ] p r e d i c t (double [ ] input ){
double y = getBias ( ) ;

for ( int i = 0 ; i < input . l ength ; i ++){
y = y + weight [ i ] ∗ input [ i ] ;

}

double [ ] p o s i t i v e = new double [ weight . l ength ] ;
p o s i t i v e [ expectedResult Index ] = POSITIVE ;
double [ ] negat ive = new double [ weight . l ength ] ;
negat ive [ expectedResult Index ] = NEGATIVE;

i f ( y >= 0) return p o s i t i v e ;
else return negat ive ;

}

/∗∗
∗ @param index The index o f the width
∗ @return The weigh t o f the index
∗/

public double getWeight ( int index ){
return weight [ index ] ;

}

/∗∗
∗ @return The Bias
∗/

public double getBias ( ){
return b ia s ;

}
/∗∗
∗ Se t s the expec ted r e s u l t index
∗ Some percep t rons may not use 0 f o r t h e i r expec ted r e s u l t s
∗ @param index The idex to use
∗/

public void setExpectedResult Index ( int index ){
expectedResul t Index = index ;

}
}

F Perceptron Interface

/∗∗
∗ The i n t e r f a c e t ha t must be implemented by any percep tron l i k e dev i c e
∗/

public interface Pe rc e p t r on I n t e r f a c e {
public void learnFromData (double [ ] [ ] dataSet , double [ ] [ ] expectedResu l t s ) ;
public double [ ] p r e d i c t (double [ ] input ) ;

}
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G Protein Class

import java . u t i l . ArrayList ;
import java . lang . IndexOutOfBoundsException ;

/∗∗
∗ A l i s t o f Amino Acids , Represents a p ro t e in
∗/

public class Prote in {
ArrayList<AminoAcid> aminoAcids = new ArrayList<AminoAcid>() ;

/∗∗
∗ Add an amino ac id to the p ro t e in
∗ @param aminoAcid amino ac id to add
∗/

public void add ( AminoAcid aminoAcid ){
aminoAcids . add ( aminoAcid ) ;

}

/∗∗
∗ @return The number o f amino ac id s in t h i s p ro t e in
∗/

public int s i z e ( ){
return aminoAcids . s i z e ( ) ;

}

/∗∗
∗ @param index The index o f the amino ac id
∗ @return The Amino Acid at t ha t index
∗ @throws IndexOutOfBoundsException
∗/

public AminoAcid get ( int index ) throws IndexOutOfBoundsException{
return aminoAcids . get ( index ) ;

}
}

H Secondary Structure Predictor Class

import java . u t i l . Arrays ;
import java . u t i l . ArrayList ;
import java . u t i l . HashSet ;
import java . u t i l . Set ;
import java . i o . InputStreamReader ;
import java . i o . Fi le InputStream ;
import java . i o . BufferedReader ;
import java . i o . IOException ;
import java . i o . FileNotFoundException ;
import java . lang . IndexOutOfBoundsException ;
import java . u t i l . Random ;

/∗∗
∗ Contro l s the p r e d i c t i on o f secondary s t r u c t u r e s
∗/

public class SecondaryStructurePred i c tor {
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stat ic int WINDOW SIZE = 13 ;
stat ic f ina l int SEED = 42 ;
stat ic f ina l double POSITIVE = 1 , NEGATIVE = 0 ;
Pe r c e p t r on I n t e r f a c e perceptron ;
char s t r u c t u r e ;

/∗∗
∗ Example o f how to use t h i s crazy code
∗/

public stat ic void main ( St r ing [ ] a rgs ){
double l ea rn ingRate = 0 . 0000 1 ;
double b ia s = 1 ;
int maxIterat ions = 656 ;
double weightRange = 0 . 6 ;
int noOfInputs = WINDOW SIZE ∗ 21 ;
SecondaryStructurePred i c tor sp ;

sp = new SecondaryStructurePred i c tor ( ’h ’ ) ;
sp . t e s tPecept ron (new Perceptron ( learn ingRate , b ias ,

maxIterat ions , weightRange , noOfInputs ) ) ;

sp = new SecondaryStructurePred i c tor ( ’ e ’ ) ;
sp . t e s tPecept ron (new Perceptron ( learn ingRate , b ias ,

maxIterat ions , weightRange , noOfInputs ) ) ;

sp = new SecondaryStructurePred i c tor ( ’ ’ ) ;
sp . t e s tPecept ron (new Perceptron ( learn ingRate , b ias ,

maxIterat ions , weightRange , noOfInputs ) ) ;

sp = new SecondaryStructurePred i c tor ( ’ ∗ ’ ) ;
sp . t e s tPecept ron (new Mult iPerceptron ( learn ingRate , b ias ,

maxIterat ions , weightRange , noOfInputs ) ) ;

sp = new SecondaryStructurePred i c tor ( ’ ∗ ’ ) ;
sp . t e s tPecept ron (new NeuralNet (WINDOW SIZE ∗ 21 , 3 , 40 , 0 . 1 5 ) ) ;

}

/∗∗
∗ Defau l t cons t ruc t o r f o r Secondary S t ruc tu re Pred ic tor
∗ @param s t r u c t u r e The s t r u c t u r e to l ook out f o r
∗ Ei ther ’ h ’ , ’ e ’ , ’ ’ or ’∗ ’
∗/

public SecondaryStructurePred i c tor (char s t r u c t u r e ){
this . s t r u c t u r e = s t r u c t u r e ;

}

/∗∗
∗ Run the t e s t s
∗ @param perceptron Perceptron to run t e s t s on
∗/

void t e s tPecept ron ( P e r c ep t r on In t e r f a c e perceptron ){
this . perceptron = perceptron ;
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i f ( perceptron instanceof Perceptron ){
switch ( s t r u c t u r e ){

case ’ e ’ :
( ( Perceptron ) perceptron ) . setExpectedResult Index ( 1 ) ; break ;

case ’ ’ :
( ( Perceptron ) perceptron ) . setExpectedResult Index ( 2 ) ; break ;

}
}

try{
//This w i l l need changing to run on any o ther pc
ArrayList<Protein> p r o t e i n L i s t =

getProte insFromFi le ( ” prote in−secondary−s t r u c t u r e . t r a i n ” ) ;

//Count Amino Acids
int noOfAminoAcids = 0 ;

for ( Prote in p ro t e in : p r o t e i n L i s t ){
noOfAminoAcids = noOfAminoAcids + pro t e in . s i z e ( ) ;

}

double [ ] [ ] to ta lDataSet = new double [ noOfAminoAcids ] [ 0 ] ;
double [ ] [ ] t o ta lExpec tedResu l t s = new double [ noOfAminoAcids ] [ 3 ] ;

int arrayIndex = 0 ;

for ( Prote in p ro t e in : p r o t e i n L i s t ){
double [ ] [ ] [ ] dataSetAndExpectedResults =

generateDataSet ( p ro t e in ) ;
for ( int i = 0 ; i < dataSetAndExpectedResults [ 0 ] . l ength ; i ++){

tota lDataSet [ arrayIndex ] = dataSetAndExpectedResults [ 0 ] [ i ] ;
t o ta lExpec tedResu l t s [ arrayIndex ] =

dataSetAndExpectedResults [ 1 ] [ i ] ;
arrayIndex++;

}
}

double [ ] [ ] [ ] balancedDataSetAndExpectedResults =
createBalancedDataSet ( tota lDataSet ,

tota lExpectedResu l t s , 7200 ) ;
perceptron . learnFromData ( balancedDataSetAndExpectedResults [ 0 ] ,

balancedDataSetAndExpectedResults [ 1 ] ) ;

//This w i l l need changing to run on any o ther pc
p r o t e i n L i s t =

getProte insFromFi le ( ” prote in−secondary−s t r u c t u r e . t r a i n ” ) ;

c a l cu l a t ePe r c en tageCor r e c t ( p r o t e i n L i s t ) ;
}
catch ( FileNotFoundException f n f e ){

System . out . p r i n t l n ( ” F i l e not found” ) ;
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System . e x i t ( 1 ) ;
}
catch ( IOException i o e ){

System . out . p r i n t l n ( ”Reading f i l e Fa i l ed ” ) ;
System . e x i t ( 2 ) ;

}
}

/∗∗
∗ Ca l cu l a t e s the average c o r r e l a t i o n c o e f f i c i e n t f o r the g iven Prote ins
∗ @param pro t e i nL i s t A l i s t o f p r o t e i n s
∗ @param s t r u c t u r e The s t r u c t u r e to check f o r
∗ @return Corre l a t i on c o e f f i c i e n t
∗/

private double c a l c u l a t e A v e r a g e C o r r e l a t i o n C o e f f i c i e n t (
ArrayList<Protein> pr o t e i nL i s t , char s t r u c t u r e ){

long p = 0 ; long n = 0 ;
long u = 0 ; long o = 0 ;

int s = 0 ;
switch ( s t r u c t u r e ){
case ’ h ’ : s = 0 ; break ;
case ’ e ’ : s = 1 ; break ;
case ’ ’ : s = 2 ; break ;
}

for ( Prote in p ro t e in : p r o t e i n L i s t ){
double [ ] [ ] [ ] dataSetAndExpectedResults = generateDataSet ( p ro t e in ) ;
double [ ] [ ] ds = dataSetAndExpectedResults [ 0 ] ;

for ( int i = 0 ; i < pro t e in . s i z e ( ) ; i ++){
i f ( ( g e t I s S t r u c t u r e ( p ro t e in . get ( i ) , s t r u c t u r e ) ) &&

( perceptron . p r e d i c t ( ds [ i ] ) [ s ] == POSITIVE) )
p++;

else i f ( ! ( g e t I s S t r u c t u r e ( p ro t e in . get ( i ) , s t r u c t u r e ) ) &&
( perceptron . p r e d i c t ( ds [ i ] ) [ s ] == NEGATIVE) )

n++;
else i f ( ( g e t I s S t r u c t u r e ( p ro t e in . get ( i ) , s t r u c t u r e ) ) &&

( perceptron . p r e d i c t ( ds [ i ] ) [ s ] == NEGATIVE) )
u++;

else i f ( ! ( g e t I s S t r u c t u r e ( p ro t e in . get ( i ) , s t r u c t u r e ) ) &&
( perceptron . p r e d i c t ( ds [ i ] ) [ s ] == POSITIVE) )

o++;
}

}

double numerator = (p ∗ n) − (u ∗ o ) ;
long denominatorSquared = (n + u) ∗ (n + o ) ∗ (p + u) ∗ (p + o ) ;
double denominator = Math . s q r t ( denominatorSquared ) ;
return numerator / denominator ;

}

/∗∗
∗ Ca l cu l a t e s the succe s s ra t e
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∗ @param pro t e i nL i s t A l i s t o f p r o t e i n s
∗ @return Percentage succeeded
∗/

private double ca l cu l a t ePe r c en tageCor r e c t ( ArrayList<Protein> p r o t e i n L i s t ){
int count = 0 ; int t o t a l = 0 ;

int s = 0 ;
switch ( s t r u c t u r e ){
case ’ h ’ : s = 0 ; break ;
case ’ e ’ : s = 1 ; break ;
case ’ ’ : s = 2 ; break ;
}

Random r = new Random ( 3 6 ) ;

for ( Prote in p ro t e in : p r o t e i n L i s t ){
double [ ] [ ] [ ] dataSetAndExpectedResults = generateDataSet ( p ro t e in ) ;
double [ ] [ ] ds = dataSetAndExpectedResults [ 0 ] ;

for ( int i = 0 ; i < pro t e in . s i z e ( ) ; i ++){
i f ( s t r u c t u r e != ’ ∗ ’ ){

i f ( ( g e t I s S t r u c t u r e ( p ro t e in . get ( i ) , s t r u c t u r e ) ) &&
( perceptron . p r e d i c t ( ds [ i ] ) [ s ] == POSITIVE) )

count++;
else i f ( ! ( g e t I s S t r u c t u r e ( p ro t e in . get ( i ) , s t r u c t u r e ) ) &&

( perceptron . p r e d i c t ( ds [ i ] ) [ s ] == NEGATIVE) )
count++;

}
else i f ( s t r u c t u r e == ’ ∗ ’ ){

double h = perceptron . p r e d i c t ( ds [ i ] ) [ 0 ] ;
double e = perceptron . p r e d i c t ( ds [ i ] ) [ 1 ] ;
double c = perceptron . p r e d i c t ( ds [ i ] ) [ 2 ] ;

i f ( ( g e t I s S t r u c t u r e ( p ro t e in . get ( i ) , ’ h ’ ) ) &&
(h == POSITIVE) )

count++;
else i f ( ( g e t I s S t r u c t u r e ( p ro t e in . get ( i ) , ’ e ’ ) ) &&

( e == POSITIVE) )
count++;

else i f ( ( g e t I s S t r u c t u r e ( p ro t e in . get ( i ) , ’ ’ ) ) &&
( c == POSITIVE) )

count++;
}
t o t a l ++;

}
}
return ( ( ( double ) count / t o t a l ) ∗ 1 0 0 ) ;

}

/∗∗
∗ Creates a ba lanced data s e t depending on the s t r u c t u r e o f the c l a s s
∗ @param dataSet The unbalanced data s e t
∗ @param expec t edResu l t s The corresponding co r r e c t r e s u l t s
∗ @param s i z e The s i z e o f the ba lanced data s e t
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∗ @return Balanced data s e t [ 0 ] and expec ted r e s u l t [ 1 ]
∗/

double [ ] [ ] [ ] createBalancedDataSet (
double [ ] [ ] dataSet , double [ ] [ ] expectedResul ts , int s i z e ){

double [ ] [ ] balancedDataSet = new double [ s i z e ] [ 0 ] ;
double [ ] [ ] ba lancedExpectedResults = new double [ s i z e ] [ 1 ] ;

i f ( s t r u c t u r e == ’ ∗ ’ ) {
double [ ] [ ] [ ] r e s u l t = {dataSet , expectedResu l t s } ;
return r e s u l t ;

}

Random r = new Random(SEED) ;
int j ;
double p ;
boolean found ;
int s t r u c t u r e I n t = 0 ;
Set<Integer> s = new HashSet<Integer >() ;

switch ( s t r u c t u r e ){
case ’ h ’ : s t r u c t u r e I n t = 0 ; break ;
case ’ e ’ : s t r u c t u r e I n t = 1 ; break ;
case ’ ’ : s t r u c t u r e I n t = 2 ; break ;
}

int k =0;
for ( int i = 0 ; i < s i z e ; i ++){

found = fa l se ;
p = r . nextDouble ( ) ;
while ( ! found ){

j = r . next Int ( dataSet . l ength ) ;
i f ( ( ( p < 0 . 5 ) && ( expectedResu l t s [ j ] [ s t r u c t u r e I n t ] == POSITIVE) )
| | ( ( p >=0.5) && ( expectedResu l t s [ j ] [ s t r u c t u r e I n t ] == NEGATIVE) ) ){

i f ( ! s . conta in s ( j ) ){
s . add ( j ) ;
balancedDataSet [ i ] = dataSet [ j ] ;
ba lancedExpectedResults [ i ] = expectedResu l t s [ j ] ;
found = true ;
i f (p >= 0 . 5 ) k++;

}
}

}
}
double [ ] [ ] [ ] r e s u l t = {balancedDataSet , ba lancedExpectedResults } ;
return r e s u l t ;

}

/∗∗
∗ Uses the o b j e c t r e p r e s en t a t i on to produce a data s e t
∗ @param pro t e in The pro t e in to genera te a data s e t f o r
∗ @return Data s e t [ 0 ] and expec ted r e s u l t [ 1 ]
∗/

double [ ] [ ] [ ] generateDataSet ( Prote in p ro t e in ){
f ina l int windowSize = SecondaryStructurePred i c tor .WINDOW SIZE;
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f ina l int noOfAminoAcids = 20 ;
f ina l int emptySpace = 1 ;

int a r rayS i z e = windowSize ∗ ( noOfAminoAcids + emptySpace ) ;

double [ ] [ ] dataSet = new double [ p ro t e in . s i z e ( ) ] [ a r r ayS i z e ] ;
double [ ] [ ] expectedResu l t s = new double [ p ro t e in . s i z e ( ) ] [ 3 ] ;

for (double [ ] d : dataSet ){
Arrays . f i l l (d , NEGATIVE) ;

}

for ( int i = 0 ; i < pro t e in . s i z e ( ) ; i ++){
for ( int j = −(windowSize − 1) / 2 ; j <= ( windowSize − 1) / 2 ; j++){

try{
dataSet [ i ] [ ( j + ( windowSize − 1) / 2) ∗ 21 +

pro t e in . get ( i + j ) . g e t O f f s e t ( ) ] = POSITIVE ;
}
catch ( IndexOutOfBoundsException ioobe ){

dataSet [ i ] [ ( j + ( windowSize − 1) / 2) ∗ 21 + 20 ] = POSITIVE ;
}

}
expectedResu l t s [ i ] [ 0 ] = getIsStructureNum ( pro t e in . get ( i ) , ’ h ’ ) ;
expectedResu l t s [ i ] [ 1 ] = getIsStructureNum ( pro t e in . get ( i ) , ’ e ’ ) ;
expectedResu l t s [ i ] [ 2 ] = getIsStructureNum ( pro t e in . get ( i ) , ’ ’ ) ;

}

double [ ] [ ] [ ] r e s u l t = {dataSet , expectedResu l t s } ;
return r e s u l t ;

}

/∗∗
∗ @param aminoAcid The amino ac id to f i nd the s t r u c t u r e o f
∗ @param s t r u c t u r e The s t r u c t u r e to compare wi th
∗ @return t rue i f t h a t amino ac id i s t h a t s t r u c t u r e
∗/

private boolean g e t I s S t r u c t u r e ( AminoAcid aminoAcid , char s t r u c t u r e ){
i f ( getIsStructureNum ( aminoAcid , s t r u c t u r e ) == 1 . 0 ) return true ;
else return fa l se ;

}

/∗∗
∗ @param aminoAcid The amino ac id to f i nd the s t r u c t u r e o f
∗ @param s t r u c t u r e The s t r u c t u r e to compare wi th
∗ @return POSITIVE i f t h a t amino ac id i s t h a t s t r u c t u r e o therw i s e NEGATIVE
∗/

private double getIsStructureNum ( AminoAcid aminoAcid , char s t r u c t u r e ){
i f ( s t r u c t u r e == ’h ’ )

i f ( aminoAcid . getIsAlpha ( ) ) return POSITIVE ;
else return NEGATIVE;

else i f ( s t r u c t u r e ==’ e ’ )
i f ( aminoAcid . ge t I sBeta ( ) ) return POSITIVE ;
else return NEGATIVE;

else i f ( s t r u c t u r e ==’ ’ )
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i f ( aminoAcid . g e t I s C o i l ( ) ) return POSITIVE ;
else return NEGATIVE;

return 0 ;
}

/∗∗
∗ Reads in the p ro t e i n s from the f i l e
∗ @param f i l ename The f i l ename to l ook in
∗ @return L i s t o f p r o t e i n s from tha t f i l e
∗ @throws IOException
∗ @throws FileNotFoundException
∗/

ArrayList<Protein> getProte insFromFi le ( S t r ing f i l ename )
throws IOException , FileNotFoundException{

// Set up f i l e s t u f f
Fi leInputStream f i s = new Fi leInputStream ( f i l ename ) ;
InputStreamReader in = new InputStreamReader ( f i s ) ;
BufferedReader br = new BufferedReader ( in ) ;

ArrayList<Protein> p r o t e i n L i s t = new ArrayList<Protein >() ;
Prote in p ro t e in = new Prote in ( ) ;

boolean s t a r t e d = fa l se ;

while ( true ){
St r ing l i n e = br . readLine ( ) ;
i f ( l i n e == null ) break ;
else i f ( l i n e . s tartsWith ( ”<>” ) ){

// S ta r t next p ro t e in
s t a r t e d = true ;
p r o t e in = new Prote in ( ) ;
p r o t e i n L i s t . add ( p ro t e in ) ;

}
else i f ( l i n e . s tartsWith ( ”end” ) ) s t a r t e d = fa l se ;
else i f ( l i n e . s tartsWith ( ”<end>” ) ) s t a r t e d = fa l se ;
else i f ( s t a r t e d ){

pro t e in . add (new AminoAcid ( l i n e . charAt ( 0 ) , l i n e . charAt ( 2 ) ) ) ;
}

}
return p r o t e i n L i s t ;

}
}

I Test Interface

/∗∗
∗ The i n t e r f a c e t ha t t e s t s must implement to be run as t e s t s
∗/

public interface Test {
public double [ ] [ ] [ ] generateDataset ( int s i z e ) ;

}

J Two Dimensional Perceptron Test Class
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import java . u t i l . Random ;
/∗∗
∗ This c l a s s encap su l a t e s a t e s t harness f o r a
∗ Line gues s ing perceptron
∗/

public class TwoDimensionalPerceptronTest implements Test{
private double m = 2 , c = 0 . 0 7 ;
stat ic f ina l double POSITIVE = 1 , NEGATIVE = 0 ;
stat ic f ina l long SEED = 42 ;

/∗∗
∗ Se t s the g rad i en t o f the l i n e
∗ @param m Gradient o f the l i n e
∗/

public void setM (double m){
this .m = m;

}

/∗∗
∗ Se t s the o f f s e t o f the l i n e
∗ @param c the O f f s e t o f the l i n e
∗/

public void setC (double c ){
this . c = c ;

}

/∗∗
∗ Generate a Line data s e t
∗ @param s i z e The number o f po in t s
∗ @return a data s e t and expec ted r e s u l t s f o r Line
∗/

public double [ ] [ ] [ ] generateDataset ( int s i z e ){
double [ ] [ ] dataSet = new double [ s i z e ] [ 2 ] ;
double [ ] [ ] expectedResu l t s = new double [ s i z e ] [ 1 ] ;

Random r = new Random(SEED) ;

for ( int i = 0 ; i < s i z e ; i ++){
dataSet [ i ] [ 0 ] = r . nextDouble ( ) ;
dataSet [ i ] [ 1 ] = r . nextDouble ( ) ;
i f ( dataSet [ i ] [ 1 ] < m ∗ dataSet [ i ] [ 0 ] + c )

expectedResu l t s [ i ] [ 0 ] = POSITIVE ;
else expectedResu l t s [ i ] [ 0 ] = NEGATIVE;

}

double [ ] [ ] [ ] r e s u l t = {dataSet , expectedResu l t s } ;
return r e s u l t ;

}
}
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